Observed Program Performance Variability

- Fixed binary program and a fixed machine with a fixed software environment with fixed data input.
- Repeat the program execution n times.
- You get n distinct performance numbers.
- If you do not observe variability, you do not need statistics.
Why program performances vary?

- Physical technology
 - Variable CPU frequency, asynchronous peripherals, input/output.
- Processor micro-architecture designs
 - OoO execution, branch prediction, data pre-fetching, memory hierarchy, etc.
- Competition between peripherals
 - Shared memory, NUMA, communication network.
- Operating systems
 - Virtual memory management, process memory layout, thread and process scheduling.
- Algorithmic factors
 - Parallel programming with imbalanced workload.
 - Non deterministic algorithms.
Example of experiences on a dedicated machine

gcc 312_swim_m 2 threads

<table>
<thead>
<tr>
<th>Time (seconds)</th>
<th>No Affinity</th>
<th>With affinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

gcc 312_swim_m 4 threads

<table>
<thead>
<tr>
<th>Time (seconds)</th>
<th>No Affinity</th>
<th>With affinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

gcc 312_swim_m 6 threads

<table>
<thead>
<tr>
<th>Time (seconds)</th>
<th>No Affinity</th>
<th>With affinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example of experience on a shared machine with dedicated CPU

GNU Fortran Ifort

Compiler = GNU Fortran (GCC) 4.4.6

Compiler = Ifort (IFORT) 12.1.0

Linux Kernel = 2.6.32

Input = stdin

Executions = 35

Intel Xeon E5 2670, 2.60 GHz, 16 cores, 64 GB RAM

Before doing statistics: basic assumptions

- Independence of the measurements.
- Continuous model vs. discrete model.

Parametric vs. non-parametric statistics

- **Parametric statistics**: assume a p.d.f.
 - Ex: Student t-test.
- **Non-Parametric statistics**: any kind of data distribution.
 - Ex: Wilcoxon-Mann-Whitney, chi-square test, central limit theorem.
Advantages of parametric statistics

- Parameters of a parametric model can often be interpreted.
- Formal mathematical proofs.
- More accurate for large data sets and multi-dimensional data.

Advantages of non-parametric statistics

- Do not need a mathematical model.
- Do not need to build new statistics for every data distribution.
- For large data sets, it works pretty well (but without proof).

Standard program performance metrics

- Summarise n performance numbers by a single one:
 - Mean
 - Median
 - Minimum
 - Maximum
- You lose information.

How to model precisely the performances of a program to be able to take reliable conclusions/decisions?

Are the data distributions of a Gaussian nature?

- 10 years of collected data performances
- Various machines architectures and configurations.
- SPEC CPU applications (2001, 2006), all SPEC OMP applications, NAS Parallel Benchmark, own micro-benchmarks, other parallel applications, various compilers versions and options, Linux versions.
- 2438 data samples, each one contains between 30 and 1000 execution times.
- We did a normality test (Shapiro).
- With a risk of 5%, 67% of the samples are not of Gaussian nature.
Standard tests in statistics: Speedup-Test for program performances

- t-test of Student to compare between two theoretical means.
 - Program performances do not follow normal distributions in general.
- Wilcoxon-Mann-Whitney to compare between two theoretical medians.
 - Is a single median a good summary of n data?

Some known theoretical density functions

- Gaussian law
 - Used in physics

- Student law
 - Used to compute the confidence interval of the average

Which function can we use to model a continuous random variable?

Some facts

- Every sample has an infinite possible theoretical models.
- In the past, some density functions have been selected for their mathematical characteristics (to ease formal problem solving by hand).
- It is impossible to formally prove that one model is better than another, the theoretical distribution remains always unknown.
- Statistics do not provide guarantees, they help decision and analysis of complex/random phenomena.
Some known theoretical density functions

Pareto law

Used in queue theory, quality management, etc.

Exponential law

Used in electronics and in radioactivity.

Gamma law

It is a generalisation of other laws.

Lognormal law

Used in finance, stock market, and many other domains.
Parametric statistics for program performance analysis, comparison and evaluation

Some known theoretical density functions

Weibull law

Used in the science of materials

Many programs performances follow multi-modal distributions

Gaussian mixture

The program performances is modelled with a probability density function equal to the sum of K gaussians:

$$ f_X(u) = \sum_{k=1}^{K} \pi_k \varphi_X(\mu_k, \sigma_k, u) $$

where $\sum_{k=1}^{K} \pi_k = 1$ and $\varphi_X(\mu_k, \sigma_k)$ is the probability density function of a gaussian with mean μ_k et standard deviation σ_k.

$$ \varphi_X(\mu, \sigma, u) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(u-\mu)^2}{2\sigma^2}} $$

Clustering in statistics

Given a data sample of size n, compute estimators of:

- The number K of gaussians (called clusters);
- The weight π_k of each cluster k;
- The theoretical mean μ_k of each cluster k;
- The standard deviation σ_k of each cluster k.

A famous algorithm called EM does the job.
Examples of clustering

![Graphs showing examples of clustering](image1.png)

Checking the fitting of the data to the GM (Kolmogorov-Smirnov test)

We designed a KS test adequately calibrated with bootstrap.

![Graphs showing the fitting test](image2.png)

Experiments

Clustering results

with a risk error of 5%

- 83% of the samples are modelled correctly with GM.
- 17% of the samples are rejected.

Why 17% of the sample are rejected?

- Ties (identical values), rounding errors when collecting performance data.
 - this problem is easily fixed by increasing the precision of the measurements.
- Heavy-tail distributions cannot be approximated easily with GM.
New performance metrics

Let X and Y be two random variables representing the performances of two programs.

1. The mean difference: $I_1 = \mathbb{E}[|X - Y|]$
2. The probability that a single program run is better than another: $I_2 = \mathbb{P}[X < Y]$.
3. The probability that a single run is better than all the others: $I_3 = \mathbb{P}[X_i < \min(X_2, \ldots, X_n)] = \mathbb{E}[\mathbb{1}_{X_i < \min(X_2, \ldots, X_n)}]$
4. The variability level I_4: the number of modes.

| Metric 1: $\mathbb{E}[|X - Y|]$ |
|---------------------------|
| \mathcal{X} is a sample of size n, \mathcal{Y} is a sample of size m. X and Y are approximated by GM (K, μ, σ) and (K', μ', σ') respectively. |
| 1. Non-parametric estimation: |
| $\mathbb{E}[|X - Y|] = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} |x_i - y_j|$ |
| 2. Parametric estimation with GM: |
| $\mathbb{E}[|X - Y|] = \sum_{i=1}^{K} \sum_{j=1}^{K'} \mathbb{P}[\mathbb{1}_{X_i < \min(X_2, \ldots, X_n)}] \Phi\left(\frac{\mu_i - \mu'}{\sqrt{\sigma_i^2 + \sigma'^2}}\right) + \sqrt{2(\sigma_i^2 + \sigma'^2)} e^{-\frac{(\mu_i - \mu')^2}{2(\sigma_i^2 + \sigma'^2)}}$ |
| where: Φ is the CDF of the Gaussian $\phi(0, 1, u)$ |

<table>
<thead>
<tr>
<th>Metric 2: $\mathbb{P}[X < Y]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{X} is a sample of size n, \mathcal{Y} is a sample of size m. X and Y are approximated by GM (K, μ, σ) and (K', μ', σ') respectively.</td>
</tr>
<tr>
<td>1. Non-parametric estimation (Man-Whitney statistic):</td>
</tr>
<tr>
<td>$\mathbb{P}[X < Y] = \mathbb{E}[\mathbb{1}{X < Y}] = \frac{1}{mn} \sum{i=1}^{m} \sum_{j=1}^{n} \mathbb{1}_{X_i < Y_j}$</td>
</tr>
<tr>
<td>2. Parametric estimation with GM:</td>
</tr>
<tr>
<td>$\mathbb{P}[X < Y] = \sum_{i=1}^{K} \sum_{j=1}^{K'} \mathbb{P}[\mathbb{1}_{X_i < \min(X_2, \ldots, X_n)}] \Phi\left(\frac{\mu_i - \mu'}{\sqrt{\sigma_i^2 + \sigma'^2}}\right)$</td>
</tr>
<tr>
<td>where: Φ is the CDF of the Gaussian $\phi(0, 1, u)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric 3: $\mathbb{P}[X_1 \leq \min(X_2, \ldots, X_m)]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{X} is a sample of size n, \mathcal{Y} is a sample of size m. X and Y are approximated by GM (K, μ, σ) and (K', μ', σ') respectively.</td>
</tr>
<tr>
<td>1. Non-parametric estimation:</td>
</tr>
<tr>
<td>$\mathbb{P}[X_1 \leq \min(X_2, \ldots, X_m)] = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbb{1}_{X_i < \min(X_2, \ldots, X_n)}$</td>
</tr>
<tr>
<td>2. Parametric estimation. We note $Y = \min(X_2, \ldots, X_m)$ and G its CDF. $\mathbb{P}[X < Y] = \mathbb{E}[1 - G(x)] = \int (1 - G(u)) f_1(u) du$</td>
</tr>
<tr>
<td>where $f_1(u) = \sum_{i=1}^{K} \Phi\left(\frac{\mu_i - \mu}{\sqrt{\sigma_i^2 + \sigma'^2}}\right)$</td>
</tr>
</tbody>
</table>
Metric 4: Variability level

- The variance is a measure of dispersion around the average, not easy to interpret!
 \[P[|X - \mu| > 4\sigma_X] \] is very small
- Our proposal: variability level = number of modes.

Empirical study of variability levels of programs execution times:

- The variability level: the number of modes.
 - \(\approx 37\% \) of the samples have a variability level equal to 1.
 - \(\approx 32\% \) of the samples have a variability level equal to 2.
 - \(\approx 12\% \) of the samples have a variability level equal to 3.
 - \(\approx 19\% \) of the samples have a variability level \(\geq 4 \).

Limitations

- Some cases (Heavy-tail distributions) cannot be well modelled with GM.
- GM are not appropriate models for studying extreme value performances (minimum and maximum).

Future plan

- Consider multi-dimensional performance data: tuples of values of distinct nature \{execution time, energy consumption, memory consumption, network traffic, etc\}.
- It is very difficult to have satisfactory regression models for multi-dimensional data.
- GM models are well adapted for such mathematical modelling.
Conclusions

- Observed program performances are multi-modal;
- Modelling program performances with gaussian mixtures;
- Test of the fitting between the GM model and the data;
- New performance metrics;
- Free software called VARCORE.

Main reference

Full research report (70 pages) with free software and demo.
Parametric and Non-Parametric Statistics for Program Performance Analysis and Comparison.
https://hal.inria.fr/hal-01286112

VARCORE software

- Programmed with R.
- Requires free packages: mclust, R.utils
- Documented.

Example 1: analysing the performances of one program

- Load performance data of one program
- Apply clustering (build a GM model)
- Check if the GM model is good enough.
- Compute the variability level.
- Print and plot the results.
Example 2: comparing the performances of multiple codes versions

- Load performance data of multiple codes versions.
- Apply clustering (build a GM model) for each one.
- Check if the GM model is good enough for each one.
- Decide which is the best code version.
- Compute other performance metrics.